Naive Bayes classifiers#

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pd.set_option('mode.copy_on_write', True)

Also see: Naive Bayes classifiers in the Python Data Science Handbook.

import seaborn as sns
penguins = pd.read_csv('data/penguins.csv').dropna()
penguins
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 male 2007
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 female 2007
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 female 2007
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 female 2007
5 Adelie Torgersen 39.3 20.6 190.0 3650.0 male 2007
... ... ... ... ... ... ... ... ...
339 Chinstrap Dream 55.8 19.8 207.0 4000.0 male 2009
340 Chinstrap Dream 43.5 18.1 202.0 3400.0 female 2009
341 Chinstrap Dream 49.6 18.2 193.0 3775.0 male 2009
342 Chinstrap Dream 50.8 19.0 210.0 4100.0 male 2009
343 Chinstrap Dream 50.2 18.7 198.0 3775.0 female 2009

333 rows × 8 columns

sns.pairplot(penguins, hue="species")
<seaborn.axisgrid.PairGrid at 0x7f5ef1664910>
_images/befeef18ab9a004bca0630e09983e21ba2f2a08d5116a96c2c1a156df365bf4b.png
species_names = ['Chinstrap', 'Gentoo']
df = penguins.loc[
    penguins['species'].isin(species_names),
    ['species', 'body_mass_g', 'bill_depth_mm']
]
df
species body_mass_g bill_depth_mm
152 Gentoo 4500.0 13.2
153 Gentoo 5700.0 16.3
154 Gentoo 4450.0 14.1
155 Gentoo 5700.0 15.2
156 Gentoo 5400.0 14.5
... ... ... ...
339 Chinstrap 4000.0 19.8
340 Chinstrap 3400.0 18.1
341 Chinstrap 3775.0 18.2
342 Chinstrap 4100.0 19.0
343 Chinstrap 3775.0 18.7

187 rows × 3 columns

sns.histplot(data=df, x="body_mass_g", hue="species")
<Axes: xlabel='body_mass_g', ylabel='Count'>
_images/741040a2c7dab626396a3fcf793fb8571265d879b6324984459dc4456a0768db.png
by_species = df.groupby('species')
bm_by_species = by_species['body_mass_g']
fig, axes = plt.subplots(1, 2)
axes[0].hist(bm_by_species.get_group('Chinstrap'))
axes[0].set_title('Chinstrap')
axes[1].hist(bm_by_species.get_group('Gentoo'));
axes[1].set_title('Gentoo')
Text(0.5, 1.0, 'Gentoo')
_images/2b675757c2656aa6ebdee3335c722c9d7923b2107f391f6fb5b274be766bc971.png

Enumerate#

While we are here — we introduce enumerate.

Imagine we need both the elements in a list, and the position of that element:

position_no = 0  # A variable to keep track of the position (index).
for name in species_names:
    print('Group', position_no, 'name is', name)
    position_no = position_no + 1  # We have to increment the position.
Group 0 name is Chinstrap
Group 1 name is Gentoo

We can avoid the extra variable by using enumerate, wrapped around the set of things we want to process. enumerate returns two things at each step — the position (index), and the next element from the set of things.

for position_no, name in enumerate(species_names):
    print('Group', position_no, 'name is', name)
Group 0 name is Chinstrap
Group 1 name is Gentoo

We use enumerate to do the plots more neatly below.

The plots again:

fig, axes = plt.subplots(1, 2)
for i, name in enumerate(species_names):
    axes[i].hist(bm_by_species.get_group(name))
    axes[i].set_title(name)
_images/2b675757c2656aa6ebdee3335c722c9d7923b2107f391f6fb5b274be766bc971.png

Towards classification with probability#

We are going to start to think about getting the probability of a particular mass given we have a Chinstrap or a Gentoo penguin. We might like to start with density histograms. Here was ask Matplotlib to set the area of the bars to sum to 1.

fig, axes = plt.subplots(1, 2)
for i, name in enumerate(species_names):
    axes[i].hist(bm_by_species.get_group(name), density=True)
    axes[i].set_title(name)
_images/5d094aa84a6cd81559d133b5e15999d6f76a8d5491078ecb1813fdd080df6209.png

For the moment, let us model these two distributions as normal curves.

# Notice the Numpy std function (variance divisor is n rather than
# (n - 1).  This is to match scikit-learn's implementation.
bm_params = bm_by_species.agg(mean="mean", std=lambda x : np.std(x))
bm_params
mean std
species
Chinstrap 3733.088235 381.498621
Gentoo 5092.436975 499.364666

We can use a Scipy statistics distribution to make a normal distribution with the same mean and standard deviation.

import scipy.stats as sps
# A normal distribution with the same mean and standard deviation.
chinstrap_dist = sps.norm(bm_params.loc['Chinstrap', 'mean'],
                          bm_params.loc['Chinstrap', 'std'])
# The probability density function of the distribution:
chinstraps = bm_by_species.get_group('Chinstrap')
c_masses_x = np.linspace(chinstraps.min(), chinstraps.max(), 1000)
plt.plot(c_masses_x, chinstrap_dist.pdf(c_masses_x), 'r:')
[<matplotlib.lines.Line2D at 0x7f5ed9acd7d0>]
_images/8a9dacd785dc319fcd79c965edb2a9fb125ecc3c8cbeb6c9900e13ca8ad51174.png

This is the plot along with the actual densities:

plt.hist(chinstraps, density=True)
plt.plot(c_masses_x, chinstrap_dist.pdf(c_masses_x), 'r:')
[<matplotlib.lines.Line2D at 0x7f5ed8647fd0>]
_images/a6e49ea4412fde7ceb66326e4f5468d0fe30f1bb283adf5151bb3f0345aef53e.png

The normal (Gaussian) probability density function gives our estimate of the probability (density) of any given weight.

chinstrap_dist.pdf(3500)
np.float64(0.0008676740928442561)

With these we can get the probability of any mass in the dataset given that the penguin is a Chinstrap:

\[ P(\text{mass} | \text{Chinstrap}) \]

Actually, to be concise, let’s use \(m\) for \(\text{mass}\) and \(C\) for \(\text{Chinstrap}\).

\[ P(m | C) \]

We fill in the values of \(P(m | C)\):

df['p_m_given_c'] = chinstrap_dist.pdf(df['body_mass_g'])
df
species body_mass_g bill_depth_mm p_m_given_c
152 Gentoo 4500.0 13.2 1.386413e-04
153 Gentoo 5700.0 16.3 1.767096e-09
154 Gentoo 4450.0 14.1 1.788899e-04
155 Gentoo 5700.0 15.2 1.767096e-09
156 Gentoo 5400.0 14.5 7.477526e-08
... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04
340 Chinstrap 3400.0 18.1 7.143042e-04
341 Chinstrap 3775.0 18.2 1.039432e-03
342 Chinstrap 4100.0 19.0 6.585033e-04
343 Chinstrap 3775.0 18.7 1.039432e-03

187 rows × 4 columns

Likewise:

\[ P(\text{mass}|\text{Gentoo}) \]

which we will write as:

\[ P(m | G) \]
gentoo_dist = sps.norm(bm_params.loc['Gentoo', 'mean'],
                       bm_params.loc['Gentoo', 'std'])
gentoos = bm_by_species.get_group('Gentoo')
g_masses_x = np.linspace(gentoos.min(), gentoos.max(), 1000)
plt.hist(gentoos, density=True)
plt.plot(g_masses_x, gentoo_dist.pdf(g_masses_x), 'r:');
plt.title('Gentoo density and estimated density');
_images/74da1cb30320a4e0af051142c84015a7f79e6ab38dde46a88dc48dc41a06a877.png
df['p_m_given_g'] = gentoo_dist.pdf(df['body_mass_g'])
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661
... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025

187 rows × 5 columns

We also need prior probabilities for Chinstrap (\(C\)) and Gentoo (\(G\)):

\[ P(C) \]
\[ P(G) \]

Let’s just use the proportions in the dataset:

p_chinstrap = np.mean(df['species'] == 'Chinstrap')
p_chinstrap
np.float64(0.36363636363636365)
p_gentoo = np.mean(df['species'] == 'Gentoo')
p_gentoo
np.float64(0.6363636363636364)
df['p_chinstrap'] = p_chinstrap
df['p_gentoo'] = p_gentoo
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364
... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364

187 rows × 7 columns

In our model, each individual mass can only come about in one of two situations: the penguin is a Chinstrap, or the penguin is a Gentoo. That is, the mass can only come about in these situations:

\[ P(m \text{ and } C) \]

or:

\[ P(m \text{ and } G) \]

But:

\[ P(m \text{ and } C) = P(m | C) P(C) \]

and

\[ P(m \text{ and } G) = P(m | G) P(G) \]

Let’s calculate those now:

df['p_m_and_c'] = df['p_m_given_c'] * df['p_chinstrap']
df['p_m_and_g'] = df['p_m_given_g'] * df['p_gentoo']

\(P(m \text{ and } C)\), \(P(m \text{ and } G)\) are mutually exclusive, so we add the probabilities to give the probability of getting a particular mass value \(m\):

\[ P(m) = P(m \text{ and } C) + P(m \text{ and } G) \]
df['p_mass'] = df['p_m_and_c'] + df['p_m_and_g']
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421
... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394

187 rows × 10 columns

How we have everything we need to work out the posterior probability that a penguin is a Chinstrap, given the weight of the penguin:

\[ P(C | m) = \frac{P(m | C) * P(C)}{P(m)} \]
df['p_c_given_m'] = (df['p_m_given_c'] * df['p_chinstrap']) / df['p_mass']
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass p_c_given_m
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302 0.166976
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287 0.226439
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421 0.000065
... ... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344 0.865038
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261 0.993768
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310 0.772415
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216

187 rows × 11 columns

Likewise:

\[ P(G | m) = \frac{P(m | G) * P(G)}{P(m)} \]
df['p_g_given_m'] = (df['p_m_given_g'] * df['p_gentoo']) / df['p_mass']
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass p_c_given_m p_g_given_m
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302 0.166976 0.833024
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287 0.226439 0.773561
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421 0.000065 0.999935
... ... ... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344 0.865038 0.134962
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261 0.993768 0.006232
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310 0.772415 0.227585
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784

187 rows × 12 columns

df['bayes_predictions'] = np.where(
    df['p_c_given_m'] > df['p_g_given_m'],
    'Chinstrap', 'Gentoo')
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass p_c_given_m p_g_given_m bayes_predictions
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302 0.166976 0.833024 Gentoo
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287 0.226439 0.773561 Gentoo
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421 0.000065 0.999935 Gentoo
... ... ... ... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344 0.865038 0.134962 Chinstrap
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261 0.993768 0.006232 Chinstrap
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310 0.772415 0.227585 Chinstrap
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap

187 rows × 13 columns

But - wait - for our Bayes predictions, we don’t actually need the \(P(\text{mass})\) value. Why? Because we can calculate the ratio of the posterior probabilities like this:

\[\begin{split} \text{LR} = \frac{P(C | m)}{P(G | m)} \\ = \frac {\frac{ P(m | C) * P(C) } { P(m) }} {\frac{P(m | G) * P(G)} { P(m) }} \\ = \frac{P(m | C) * P(C)} {P(m | G) * P(G)} \end{split}\]
likelihood_ratio = ((df['p_m_given_c'] * df['p_chinstrap']) /
                    (df['p_m_given_g'] * df['p_gentoo']))
# From the divide-out trick above, this gives us the same as:
np.allclose(likelihood_ratio, df['p_c_given_m'] / df['p_g_given_m'])
True

Notice we have divided out the \(P(\text{mass})\) in this ratio. Notice too that ratios above 1 mean more likely Chinstrap, and less than one mean less likely Chinstrap, more likely Gentoo. So we get the same predictions from the likelihood as we would from the full posterior probabilities:

likelihood_predictions = np.where(
    likelihood_ratio > 1,
    'Chinstrap', 'Gentoo')
np.all(df['bayes_predictions'] == likelihood_predictions)
np.True_

As you may remember from the logit transform in logistic regression, we can also get probabilities from the likelihood ratios, with:

# Probability from likelihood ratio
p_from_lr = likelihood_ratio / (1 + likelihood_ratio)
p_from_lr
152    0.166976
153    0.000003
154    0.226439
155    0.000003
156    0.000065
         ...   
339    0.865038
340    0.993768
341    0.960216
342    0.772415
343    0.960216
Length: 187, dtype: float64

Here is the same process, using the Scikit-learn library.

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(df[['body_mass_g']], df['species']);
model.class_prior_
array([0.36363636, 0.63636364])
df['sklearn_predictions'] = model.predict(df[['body_mass_g']])
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass p_c_given_m p_g_given_m bayes_predictions sklearn_predictions
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302 0.166976 0.833024 Gentoo Gentoo
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo Gentoo
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287 0.226439 0.773561 Gentoo Gentoo
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo Gentoo
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421 0.000065 0.999935 Gentoo Gentoo
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344 0.865038 0.134962 Chinstrap Chinstrap
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261 0.993768 0.006232 Chinstrap Chinstrap
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap Chinstrap
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310 0.772415 0.227585 Chinstrap Chinstrap
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap Chinstrap

187 rows × 14 columns

Scikit-learn gives the same predictions as we do:

np.all(df['bayes_predictions'] == df['sklearn_predictions'])
np.True_

Scikit-learn also calculates the posterior probabilities:

# The predict_proba values are just the posteriors.
skl_posteriors = model.predict_proba(df[['body_mass_g']])
# They are the same as ours, with calculation error.
our_posteriors = df[['p_c_given_m', 'p_g_given_m']]
assert np.allclose(skl_posteriors, our_posteriors)

The score is the proportion of labels we predicted correctly:

model.score(df[['body_mass_g']], df['species'])
0.9358288770053476

Here we calculated the same value by hand(ish):

np.mean(df['sklearn_predictions'] == df['species'])
np.float64(0.9358288770053476)

Putting the naïve into “naïve Bayes”#

Now, let’s also consider the bill_depth_mm values:

sns.histplot(data=df, x="bill_depth_mm", hue="species")
<Axes: xlabel='bill_depth_mm', ylabel='Count'>
_images/82b2e5e2839b5018673f685bf5bd5754f71e0a6f31d4f4f7e39e175c508511f7.png

Make the distributions for bill depth:

bd_by_species = by_species['bill_depth_mm']
bd_params = bd_by_species.agg(mean='mean', std=lambda x : np.std(x))
# The distributions
pd_dists = {}
species = ['Chinstrap', 'Gentoo']
for name in species:
    pd_dists[name] = sps.norm(bd_params.loc[name, 'mean'],
                              bd_params.loc[name, 'std'])

pd_dists
{'Chinstrap': <scipy.stats._distn_infrastructure.rv_continuous_frozen at 0x7f5ed1a22990>,
 'Gentoo': <scipy.stats._distn_infrastructure.rv_continuous_frozen at 0x7f5ed8674f90>}

Plot the actual and estimated density, using the Gaussian approximations:

fig, axes = plt.subplots(1, 2)
for i, name in enumerate(species):
    axis = axes[i]
    bds = bd_by_species.get_group(name)
    x = np.linspace(bds.min(), bds.max(), 1000)
    axis.hist(bds, density=True)
    axis.plot(x, pd_dists[name].pdf(x), 'r:');
    axis.set_title(f'{name} density / est density')
_images/ecb99e23e7237b78380be961a71c25b3e0b9dd16141f1830a4aada0aad1c131b.png

We can also think of these distributions in two dimensions, along with the mass:

sns.scatterplot(df, x='body_mass_g', y='bill_depth_mm',
                hue='species')
<Axes: xlabel='body_mass_g', ylabel='bill_depth_mm'>
_images/3038979d9be847dbaa209ac5fc8cafaddc0eb9aa2107d7bb298d9344152d93b2.png

Question - is the bill depth independent (in the sense of probability) from the body mass? That is - if I know the body mass, do I know anything more about the bill depth?

For the moment - let’s say “yes” (it’s independent). That’s naïve. And that’s where “naïve” Bayes reaches the name of the technique.

Using independence, we can calculate the probability of a combination of a particular body mass and bill depth value.

Call \(P(d)\) the probability of a particular bill depth value. Naïve Bayes estimates the probability of the combination with:

\[ P((m \text{ and } d) | C) = P(m | C) * P(d | C) \]

Let’s calculate the new probabilities we need:

df['p_bd_given_c'] = pd_dists['Chinstrap'].pdf(df['bill_depth_mm'])
df['p_bd_given_g'] = pd_dists['Gentoo'].pdf(df['bill_depth_mm'])
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass p_c_given_m p_g_given_m bayes_predictions sklearn_predictions p_bd_given_c p_bd_given_g
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302 0.166976 0.833024 Gentoo Gentoo 0.000008 0.076169
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo Gentoo 0.060282 0.168353
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287 0.226439 0.773561 Gentoo Gentoo 0.000228 0.267777
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo Gentoo 0.005967 0.397696
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421 0.000065 0.999935 Gentoo Gentoo 0.000834 0.357527
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344 0.865038 0.134962 Chinstrap Chinstrap 0.167371 0.000003
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261 0.993768 0.006232 Chinstrap Chinstrap 0.339946 0.002751
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap Chinstrap 0.347265 0.001984
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310 0.772415 0.227585 Chinstrap Chinstrap 0.310160 0.000100
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap Chinstrap 0.343268 0.000331

187 rows × 16 columns

The full formula for the posterior using the two measures is:

\[ P(C | (m \text{ and } d)) = \frac{ P((m \text{ and } d) | C) * P(C) }{P(m \text{ and } d)} \]

The naïve version of the formula is:

\[ P(C | (m \text{ and } d)) = \frac{ P(m | C) * P(d | C) * P(C) }{P(m \text{ and } d)} \]

But - using the likelihood trick above, we no longer have to calculate the denominator, we can just divide it out, to give the following ratio:

both_ratio = ((df['p_m_given_c'] * df['p_bd_given_c'] * df['p_chinstrap']) /
              (df['p_m_given_g'] * df['p_bd_given_g'] * df['p_gentoo']))
df['both_predictions'] = np.where(both_ratio > 1, 'Chinstrap', 'Gentoo')
df
species body_mass_g bill_depth_mm p_m_given_c p_m_given_g p_chinstrap p_gentoo p_m_and_c p_m_and_g p_mass p_c_given_m p_g_given_m bayes_predictions sklearn_predictions p_bd_given_c p_bd_given_g both_predictions
152 Gentoo 4500.0 13.2 1.386413e-04 0.000395 0.363636 0.636364 5.041503e-05 0.000252 0.000302 0.166976 0.833024 Gentoo Gentoo 0.000008 0.076169 Gentoo
153 Gentoo 5700.0 16.3 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo Gentoo 0.060282 0.168353 Gentoo
154 Gentoo 4450.0 14.1 1.788899e-04 0.000349 0.363636 0.636364 6.505088e-05 0.000222 0.000287 0.226439 0.773561 Gentoo Gentoo 0.000228 0.267777 Gentoo
155 Gentoo 5700.0 15.2 1.767096e-09 0.000381 0.363636 0.636364 6.425805e-10 0.000243 0.000243 0.000003 0.999997 Gentoo Gentoo 0.005967 0.397696 Gentoo
156 Gentoo 5400.0 14.5 7.477526e-08 0.000661 0.363636 0.636364 2.719100e-08 0.000421 0.000421 0.000065 0.999935 Gentoo Gentoo 0.000834 0.357527 Gentoo
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
339 Chinstrap 4000.0 19.8 8.186991e-04 0.000073 0.363636 0.636364 2.977088e-04 0.000046 0.000344 0.865038 0.134962 Chinstrap Chinstrap 0.167371 0.000003 Chinstrap
340 Chinstrap 3400.0 18.1 7.143042e-04 0.000003 0.363636 0.636364 2.597470e-04 0.000002 0.000261 0.993768 0.006232 Chinstrap Chinstrap 0.339946 0.002751 Chinstrap
341 Chinstrap 3775.0 18.2 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap Chinstrap 0.347265 0.001984 Chinstrap
342 Chinstrap 4100.0 19.0 6.585033e-04 0.000111 0.363636 0.636364 2.394557e-04 0.000071 0.000310 0.772415 0.227585 Chinstrap Chinstrap 0.310160 0.000100 Chinstrap
343 Chinstrap 3775.0 18.7 1.039432e-03 0.000025 0.363636 0.636364 3.779754e-04 0.000016 0.000394 0.960216 0.039784 Chinstrap Chinstrap 0.343268 0.000331 Chinstrap

187 rows × 17 columns

Accuracy:

np.mean(df['both_predictions'] == df['species'])
np.float64(1.0)

Scikit learn:

both_model = GaussianNB()
both_model.fit(df[['body_mass_g', 'bill_depth_mm']], df['species'])
GaussianNB()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
both_model.score(df[['body_mass_g', 'bill_depth_mm']], df['species'])
1.0

Let’s try the standard test-train split. We “train” our classifier using a random subset of the data:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    df[['body_mass_g', 'bill_depth_mm']],
    df['species'])
X_train
body_mass_g bill_depth_mm
210 4450.0 14.5
310 3600.0 18.6
241 5550.0 17.0
208 4300.0 13.9
295 4400.0 18.2
... ... ...
282 3250.0 18.2
249 4875.0 14.6
219 5800.0 16.2
184 5050.0 14.5
167 5850.0 15.7

140 rows × 2 columns

Here we fit the various parameters to classify the training data.

test_model = GaussianNB()
test_model.fit(X_train, y_train)
GaussianNB()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

How does Scikit-learn do in classifying the test data (that it has not seen before):

test_model.score(X_test, y_test)
1.0

We can look at the decision boundary to see where the model starts seeing Chinstrap and Gentoo penguins, as it moves through the 2D space of parameters (mass and bill depth).

# Make grid of points to classify
all_params = df[['body_mass_g', 'bill_depth_mm']].describe()
bm_x = np.linspace(all_params.loc['min', 'body_mass_g'],
                   all_params.loc['max', 'body_mass_g'],
                   50)
bm_y = np.linspace(all_params.loc['min', 'bill_depth_mm'],
                   all_params.loc['max', 'bill_depth_mm'],
                   50)
x, y = np.meshgrid(bm_x, bm_y)
xy = np.stack((x.ravel(), y.ravel()), axis=1)
xy_df = pd.DataFrame(xy, columns=X_test.columns)
# Show the classification of the test data.
sns.scatterplot(df.loc[X_test.index],
                x='body_mass_g', y='bill_depth_mm',
                hue='species')
# Overlay the classification of the grid points.
sns.scatterplot(x=xy[:, 0], y=xy[:, 1],
                hue=test_model.predict(xy_df),
                palette=sns.color_palette()[:2],
                alpha=0.2);
_images/8bdd394ec9f538968bd98a6b3619fb0ead90bb1842c507a0c223a50f7250a1c9.png